M o

Contemporary Mathematics
Volume 91, 1989

HARMONIC ANALYSIS ON FUNCTIONS WITH BOUNDED MEAN S

Yong—Zhuo Chen and Ka—Sing Lau

1. Introduction.
(T (T ]
The study of the averages ETJ 1712, Z—T-J Foertf(x)dx began in the 20's. Bohr,
T T

Besicovitch, Stepanoff used them to investigate the structure and spectrum of the almost
periodic functions [Zanela“x, o € R] . Wiener, on the other hand, showed that if B is a

bounded regular Borel measure on R, then [ is continuous if and only if

: 1 (F .
hmT_’oo ﬁj TluIZ =0.

The most important contribution to the subject was, yet, due to Wiener in the 30's. Earlier
in the twentieth century, some physicists (e.g., Raleigh, Schuster, Taylor) tried to apply

harmonic analysis fo study the chaotic signals of white light. These types of signal were known
T ,
to have finite power (lim,,. % J |f]? < =) but infinite energy (r |/|? =« ). The classical

analysis of L2(R) is hence not suitable for analyzing such signals, nor do the almost periodic
functions mentioned above (which have discrete spectra). It was this intellectually deep but
mathematically nonrigorous physics problem that led Wiener to his celebrated work of
generalized harmonic analysis on functions with bounded means [16]. During the Second
World War, Wiener made another stunning discovery by his generalized harmonic analysis: the
invention of the theory of prediction and filtering.

The formulation of the quadratic average and the corresponding spectrum in Wiener's work

depends on the identity
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T
(1.1) limz—%,J' |fG)[2dx = lim Q%Jm | g(u+€) — g(u—€)|? du
T T-00 -T e-0+ —o0
where g = W(f) is the integrated Fourier transformation (Wiener transformation) of f defined by
SWE_1
(1.2) 8@ = 5 f rf(x) € —dx + j 16 €531 ax)

In the sense of Schwartz distribution, (Wf)’ is the Fourier transformation of f.
The class of functions in (1.1), however, is not closed under addition. Recently Lau and

Lee [15] considered the following two larger linear spaces: the Marcinkiewicz space,

T 1/p
= (Fe oo®: =TI (g [ VoPax) ™ < =)

and the space of functions of bounded p—variation:

Up
= (s B ® gl =T (5] lswo —swoP ) <),

where ‘1 < p <= After provmg a Tauberian theorem for limit supremum, they are able to
extend (1.1) aé |
(1.3) liWAlly 2 < Mlga < calWilya fe B2
and the best constants c¢;,c, were found. The convolution operator and the characterization of
multipliefs on B 2 had also been investigated by Bertrandias [1] and Lau [13, 14].

The spaces BY and V P involve functions with large equivalent classes (e.g., for f e BP, il
={h:|f-hllgo=0) 2 f+IP, andforge VP, [gl=(h:|lg—hly,=0) 2 g+ (h:helP,

h’ exists} [15] ), hence it is instructive to consider the two more conventional classes of

functions
, T 1/p
T2 . _ D
B = (fe ], ®: = su [2Tf P dx) < =)
and )
Vo= (g, ®: gl = sup (5 r |gere) - gu—e)|? du) AP
5 IOC 8 1%4 IZeEO 28 — d .

The spaces B P and ¥ 2 can then be regarded as the quotients of BP /Bg and VP/VE where
= (feBP: lim—J fo) P dx = 0)
2T
T-00 T
and
V‘g = {geVP lim Zer |g(u+e) — (u—e)lpdu =0}

e~ 0+
The spaces BP had been considered by Beurling in {2]. He defined a class of functions AP,
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1€ p <, as

1/ p
1
= (F: Il —mf”ml’—@ )] -},
AP
where Q is the set of bounded, positive, integrable even functions ® which are nonincreasing on
rR* and
®(0) + r ox)dx = 1.

1

It is easy to show that A1 =L, and AP can be continuously embedded into L1 and IP.

THEOREM 1.1. (Beurling) For 1 <p <« =1, AP is a Banach algebra under

Q=

L
D
convolution, and (Ap )* is isomorphic to BY,

For fe BP , the Hilbert transformation Hf, where

Hf() = —r (x_t+th]f(t)dt xeR

of £ is not necessary to be in BP. A natural space which contains BP, and closed under the

Hilbert transformation is the following:
MO = (£ Il = sup [ZTJ f—m 7f|pJ < =),
1 (F
where m f= fT"J J (CMO stands for Central Mean Oscillation). This space is analogous to
-T ,

BMO, but only takes average on intervals [T, T]. By regarding AP_BP a5 an Ll.——L°° analog
(rather than thc P11 analog), we develop, in section 2 and section 3, the theory of the dual
pair H AP—CMOq (1 < p £2), which is corresponding to the Fefferman—Stein's H 1—BMO pair
('Iheorern 3.4). At the same time, we also obtain a theorem analogous to the Burkholder,
Gundy and Silverstein theorem (Theorem 3.5).

While the supremum part of the norm of BP dominates for duality and Hilbert
transformation, the p—module of thé norm dominates the Fourier transformation. Indeed in
section 4, we will give a result similar to (1.3) as an analog of the Plancherel theorem for the
Wiener transformation on B2 (Theorem 4.3).

The details of proofs will appear elsewhere ([7], [8]).

2. Harmonic extensions and CMOP.

Unless otherwise specified, we assume 1 < p < =,
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1 . o
Let Py(x) = T CZAmT) be the Poisson kernel, and let u(z) = uy(x) = Py*f(x), where z =x + iy,
be the harmonic extension of f on the upper half plane Ri. Follwoing a standard procedure, we

can prove

PROPOSITON 2.1. Let fe BP or AP, then
@ uy converges to f nontangentially a.e. (and also converges in norm for the AP case);

(ii) there exists ¢ > 0 such that ||uy]| <c|ifll, Yy >o.

PROPOSITION 2.2. Let u(z) = u (x) be a harmonic function on R2, then

sup ||u |] w  (or sup ||u I < o)
y>0 y>0 Y AP

if and only if there exists f € BP (or AP ) such that u(z) = Py*f(x).

We define H Bp 10 be the class of analytic functions u(z) on Ri such that
[Jul] = sup [ju || <
Hpp — y50 " Y'pP
Similarly we can define H A
Let Mf be the Hardy—-Littlewood maximal function of f defined by
Mf(x) = sup T—I'J VB

where / is an interval containing x.

THEOREM 2.3. For any f € BP, there exists ¢ > 0, such that

Ml < el

However such an inequality does not hold for f € A9 (e.g. take f = X[—l 1]). For this we

consider the nontangential maximal function

ff) = sup  |u@ty)|,
(.y)el'(x)

where ['(x) = { z=x+iy : |x—t| <y }. By using a duality inequality of Fefferman and Stein [10]
(for r > 1, there exists ¢ such that for any f, ¢ 2 0, J(Mf) d<c J v Mq)), Theorem 2.3, and a

factonzatlon theorem of analytic functions, we prove

THEOREM 2.4. Forfe Hy,, Il)‘*ll < ¢ il
AP

Let CMOP be defined as in section 1. By identifying constant functions, it is easy to show

that B? ¢ CMOP, and the inclusion is proper (e.g. f(x) =1n |x|, then fe CMOP \ BP ). Iffis an
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odd function, then f € CMOP implies that f e BP (since mr. f=0forall T2>1).

PROPOSTTION 2.5. Let 1 < p; <p, < «, then CMOP2 ¢ CMOP1, and CMOP?2 is not dense in
CMOP1,

The space BP is not closed under the Hilbert transformation (etf= X[O )’ then Hf(x) =
= ln |x| ¢ BP). However for CMO®, we have

THEOREM 2.6. If fe CMOP, then Hf ¢ CMOP and 1EAll, , < clifll

For p = 2, we can characterize CMOP by an analog of the Carlson measure [12]. A regular

Borel measure A on R_%_ is called a Central Carleson Measure (C.C. measure) if
1
Sup 5 AT, T]?) <
T>1 2T
where [T, T)? = [T, T] x [T, T].

THEOREM 2.7. fe cMO? if and only if y|vu(x,y)|2dxdy is a C.C. measure.

3. Atomic decomposition and duality.
In this section, our main concern is the duality of H Ap and CMOY. Following the notion of
Coifman and Weiss [9], we call a real integrable function ¢ on R an (a,p)—atom, 1 <p <, if

there exists a bounded interval I centered at 0, with |I| 2 2 such that (i) supp ¢ c 1, (if) ][f]] p
Yk
< 1117YD, ana iy J 0Gdx = 0,
7

We will use H%P to denote the class

{(f:freal, f= Zqu)k, {¢k} are (a,p)—atoms, Z Ikk| <o},

and let

| Wlgp = inf (Y IN] :F= Y A0, asabove ).
Under this norm, H%? is a Banach space. A duality argument yields

THEOREM 3.1. The dual of HYP s isomorphic to CMOY, the subspace of real valued
functions in CMO4.

The remaining task is to identify H*P with H Ap LetH AP denote the class of real valued
R

functions f such that both f and f are in AP, and
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A, =, A,

p
AR

It follows from the Open Mapping Theorem that H p is isomorphic to H AP Let C D denote the
A
R

class of real valued functions on R such that both f and f* are in AP,

LEMMA 3.2. Forl<p<w, H"P cH,pcC..
. , AR D

The first inclusion follows by showing that (a,p)—atoms are in H AP SO ar their sums. The
R

second inclusion follows from Theorem 2.4.

The more difficult part is the following

Lemva 33. For 1<p<2, C,c HP.
The proof depends on revising a method of Calderdn [6] and Wilson [17] to decompose

functions in C D

By using Theorem 3.1 and the above two lemms, we have
THEOREM 3.4. For 1 <p <2, (H,)* is isomorphic to CMol‘{.
THEOREM 3.5. For 1 <p <2, and for any real f, f+if € H,. if and only if f* € AP,

Note that forp =1 (A1 = Ll), Theorem 3.4 is the Fefferman—Stein duality theorem, and
Theorem 3.5 is the Burkholder, Gundy and Silverstein theorem.
We do not know Theorem 3.4 and 3.5 for the case 2 < p < «. As simple corollaries, we

have (éee [12] for the analogs)

COROLLARY 3.6. For2<p <, fe€ CMOP if and only if f = Y, + Hy, + o where Yy, ¥, € BP,

o is a constant, and

<
ll‘hlpr, Il‘hlpr cliflls 5
for some constant c.
COROLLARY 3.7. For2<p <, B‘U/HBp ~ CMOﬁQ
COROLLARY 3.8. For2<p <w, and for fe BP,

collf = iHfl, , S distf, Hgy) S cillf —iHfll,

where c¢,, ¢, are absolute constants.

COROLLARY 3.9. For 2 < p < e, and for any real f € BP, there exist absolute constants Cpy €
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such that

c,dis(f, HBﬁ ) < dist,(Hf, BP) < cdis(f, HBﬁ),
where

dis(f, HBﬁ) = inf { |[f —Re glpr rgeHp,)

and

dist,(Hf, BP) = inf { 15 — gl , - 8 € B” ).

4. The Wiener transformation.

Forl<p<e, 0a>0,let

D : ot p\p
% - gy (o] ) <1

Note that for o = 1, Bg = BP. The above expression is a natural extension of the standard
average and had been considered by Bochner [3. Chapter 6] and Wiener [16, p. 161]. For any

Borel measurable function f on R, we define the a—th difference AZ f by
My =Y () e —
k=0

(see e.g. [5]). It is easy to check that for o, B e R,
o B, _ A0+B
Ah Ah f = Ah f
A e U
For o > 0, if we let
Aaei (o)

Daei(.)x = lim o
h-0 h

’

then Daei (o)x _ (ix)aei(.)x . The a—integral of ei(°)x is defined as

( JZJ aeivx dy = (ix)(a) U:] [e] VX a’v,}

[o]
where [o] is the smallest integer greater than or equal to o, (o) = [0] — o, and ( Ju J
‘ 0

eV ay is

the [o]—th integral of ei “X in the ordinary sense.

For f € B2, we define W,

guw) = Waf(u) = 2—115 ([: + ij(x) ezu;ca dx + ﬁlf(x) ( U’;‘] O‘eivxdv) dx) ..

(ix




172 - CHEN AND LAU -

This definition extends (1.2) where ¢ = 1, and the one considered by Bochner in [5, Chapter 6]

where o is a positive integer.

Forp > 1, a>0, we let
1/p
VP = {g:llgll= sup [—lr IA“glp) < =)
o O<e<l Vg% J o' E

THEOREM 4.1. The map W, : Bé - V& is a surjective isomorphism and

) 172 —1/2

Wl = {ﬁ(0>+ajjx°“1ﬁ(x)dx W = Crayy T

where h(x) = c[‘g—%—{l 2“, h is the smallest decreasing majorant of h, i.e., h(x) = sup h(t), and
2x
20—1 '
_2
¢=—7

The proof follows from:

(a) Identifying Agg(u) with
z—,;r { — ] fix) e,
the Plancherel Theorem will imply |

J"" IAZglz _ z%f lZsinihx/Z)IZ(xlf(x)Ide‘

(b) An application of the following extended form of Tauberian theorem:

THEOREM 4.2. Let o. > O and let h be a nonnegative continuous function on [0, ).

() Suppose c; = h(0) + arxa_lfz(x)dx < w, then for any f2 0,
1

» T
f(Tx) 1
i [ P Ho a5 e g a0 ac

(ii) Let c, = h(1). Suppose that for all x € [0, 1], h(x) = c;, then for f 2 0,
T
1 [(Tx)
¢, SUp —J o) dx < sup r T%) p(x) dx.
2121 10 721 Jo 7871

Moreover, the constants c,, ¢, are best estimates for the inequalities.

Note that A(x) = ISi; d |p ,x 20, p >0, satisfies the hypothesis in Theorem 4.2.

Fora =1, W(x is the Wiener transformation W in (1.2). If we let
fo = [ fwe ™ g = 5k | swe™au

be the Fourier transformation of f, and the inverse Fourier transformation of g respectively, then
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it is simple to show that (Wf)’ = £ in the distributional sense. Theorem 4.1 reduces to

THEOREM 4.3. The Wiener transformation W : B2 - V2 is a surjective isomorphism with

Wi = [E(O)+aJ: ,;(x)dx]”’”,

ZISin xl2

where h(x) = ==

We observe that for f e L2,V g € L? such that g’ is also in L2,
Jo g (500 85 00 auan gy =pocen) 100, tyg = 8009 - sx-y
S f; . [ f; @ _1y2 f(x)ga(—x)a:x] dh
— 5t f;f‘ (xX)g(—x) U; %lﬁ dh] dx

2
- _2In2 Jl (—i)F ()3(—x)ddx

—2In2 JQ J)dg(x)
In view of such an identity, we define for g € V2,
J:, fg = ¢ J; L U:oA;; fa) & gw) du] dh
whenever the integral converges, and ¢ = (— 2 In 2)L. By using this, we can show that
THEOREM 4.4. Let g € V2, then |
r e_iu(.)a’g(u) = W_l(g) a.e.

Let A2 be the convolution algebra as in previous sections, Beurling [2] proved that the

Fourier transformation is an isomorphism of A2 onto

U2 = (L= g+ [ 72 I8l ah < = ).

If we define the duality of V2 and U2 by

@0 = [ 1ds, geviicm

Theorem 1.1, Theorem 4.3, and Theorem 4.4 imply
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THEOREM 4.5. (U2)* is isomorphic to V2, and

(g, 1) = (Wig, 1), geV2iecl?

In terms of a diagram, the duality and the Wiener transformation for B2 can be represented as:

w
@)* =B —— V2= (U
w1
A
A2 U2
v
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